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Abstract

Stochasgtic differential equations whose drift terms do
not satisfy the usual (It0) Lipschitz or linear growth conditions
in the state occur frequently as modelg in stochastic control
theory. Local stability properties are usgeful for proving global
existence for ordinary differential eguations whoge right hand gides
grow too fasgt or are not Lipschitz in the state. Here, we use a
local stochastic stability property to prove global existence,
stability, ergodicity, the strong Markov and other properties, for

a class of diffusions which occur frequently as models.



1. Introduction

For a vector x = {xi} and matrix o = {Uij}’ define the

. 2 2 2 2
Fuclidean norms [x|T = § Xs) fo]” = Z Uij’ resp. Consider the homo-
: i3
2

géneous+ Tt0 stochastic differential equation

(1) dx = f(x)dt + o(x)dz, t>0

where o(+) satisfies growth and Lipschitz conditions of the types'
(2a) o) % < x(+|x[%)

(2v) lo(x) - o] < x(+]x]),

and z(t) is a normalized vector valued Wiener process. If

(52) 260 < x(2]x])

(50) 2(x) - £(3)] < K|x-y]

then the Ito existence theory is applicable to (1) and the stability

properties can be discussed [1]. If (3b) holds locally, but (3a) is

violated, a 'local' stability property([1], Theorem 8, Chapter 2 )

ensures the existence of a solution to (1) for all t > 0.

+ . N . . . .
The homogenelty condition is not essential, except in Section b,

++K and Ki always denote real numbers; their value may change from

usuage to usuage.



Recent investigations [2-5] have studies an important class
of equations (1), where f£(-) 1is allowed some discontinuities. Re-
write (1) in the form (xl and x°  are vectors).

» N £t (x)at

dx £° (x)at + P(x)at + o(x)dz

where we assume that the £~ and o satisfy (3) and'(Q)} respectively,
and. 0(x) has a uniformly bounded inverse. (Thus G’l(x) satigfies

’”~
(2).), but f£(-) does not necessarily satisfy (3). In the sequel,
we prove existence, unigueness, and other properties of (h), when
neither (3a) nor (3b) necessarily holds, but a 'local' stability
property obtains, and also treat the problemg of asymptotic stability,
the existence of a unique invariant measure and the convergence of

the measures of (1) to the invariasnt measure.

Diffusions of the type (4) occur frequently in control
applications. Consider, for example, a 'white noise' driven n'th
order differential equation where % is a 'bang-bang' control
taking the values ({+1,-1}, or which may be discontinuous on a
smooth 'switching curve', and tend to infinity in certain

directions. Also models such as

dxl = ngt

dx, = _(xl+xi)dt + odz

are sometimes used, and the existence, and asymptotic character of

the corresgponding measures are of interest.



2. Mathematical Preliminaries

Assume

(c1) £1 end G satisfy (3) and (2), respectively, and
S_l(x) is uniformly bounded. f£(-) is a vector valued Borel func-
tion of x which is bounded in any compact set.

(C2) The process (5) has a transition density p(x; t,vy).

(C3) (Acondition on the discontinuities of %-) Let 8
denote a shpere of radius m, whose center.is the origin. Let Ne(A) denote
an e-neighborhood of the set A and u(A) the Lebesgue measure of

A. Suppose there is a (discontinuity) set D so that

umémr\%) -0

as € »0 for each m < w. For each ¢' > 0, let there be an ¢ > 0O
. . ”~ ’”~N

so that |x-y| < e dmplies [f(x,t) - £(y,t)] < e’ uniformly in x
in bounded regions, provided that x f Ne(D)’

Assume (Cl). Iet @ denote the sample space. We use the
notation (Q,z(t),f@%,P) for the Wiener process on [0,«), where 5%%
measures z(s), s <t and z(r,) - z(r,) is independent of S@t for
t <rx

<15, and P is the measure on all the f%%. We say that z(t)

1

is a Wiener process on (@, 4 ,P). Let. x(t) be the unique solution

to the It equation (5)
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1 (x)at
() dx =

2 (x)at + §(x)dz

&

We say that x(t) is an It0 process with respect to (Q,z(t),f@%,PX),
where P denotes the probability given that x(0) = x (and E,
denotes the corresponding expectation). E and P denote expectation

and probability for functionals of z(t). Define Q_ as the sample

T
space for z(t), t < T. Suppose that

——

T
(6) I8 )R )[%at < 0 wop.l.

(which is certainly true if f is bounded). Define

T

A A N T A
() = [ 8 eo))R0x(00)a(e) - 3 1187 (e(6)) 2 (1)) [Pt

and suppose that

@ B, exp £ (F)

1}
=

((7) holds for all T < o if ¥ is bounded.) Then the probability



~T +
measure P defined by

Blw) = ] e L(f) 7(20)

is a measure on the &, t < T  The process Z(t), t < T

~ tA_l A
5(t) = 2(t) - [ o~ (x(s))E(x(s))as

(o]

is a Wiener process on (QT,fﬁ%,ﬁi)} and the process

£t (x)ab
(8) dx =
£ (x)at + T()db + o(x) [dz - o (x)F(x)at]

£t (x)at

2 - A ~
£ (x)at + f(x)at + o(x)dz

is an It0 process with respect to (QT,E(t),ggt,ﬁi). The construction
was first done by Girsanov [h], and exploited by Benes [5], Rishel [2]
and then Kushner [3], for several control problems. Note the éémple
space QT’ the o-algebras 52t and the random variasbles x(t) for
the Wiener process 7%(t), and It0 process (QT,E(t),jé%,¥§) are the
same as those for the Wiener process z(t) and Itd process (5), for

t < T. Only the measures have been changed. The process (8) is

constructed by a transformation of measures on the 'nicer' process (5).

¥ T s . ‘
The measure 'ﬁi depends on the initlal condition of (5), as does the

Wiener process z(t).



The following facte (drawn from [2-L4]) about (8) will be

needed. Assume thet f is bounded and that (C1-3) hold.

(01) ([3], Theorem 5). The multivariate distributions

of (8) are continuous with respect to the initial condition x(0),

(in the sense that the characteristic functions are continuous in x(0)).
(02) ([ 3], Theorem 2). The solution to (8) is unique

in the sense that any two solutions to (8) have the same multiveriate

distributions.

(03) ﬁi sup |x(s) - x|2

: 2
Kt |x[7), t<T
2520

IA

ﬁx sup |x(s) - x]LL

K 2(]xlh, t<T
tZSEQ

IA

~T
where E_ is the expectation given x(0) = x, and K, depends on the
bound on . The proof of (03) is close to that of (27) - (28) of

~

[3] Theorem 6. Ky depends on the bound on f.

(0k) If the process (5) has a demsity p(x; t,y), then
s0 does (8) and the density of (8) is any version of ([2], Lemma 1),

(boundedness of T is not required if (6) - (7) hold) for <T

~I ~
ax; t,y) = E [exp t(5)]x(t) = yIn(x; t,¥).

Also (f is not required to be bounded in (05)).

{05) ([M], Corollary to Lemma 3). Let g(w) bve g%}

~T
measurable with Exlg@n)] < e, and t <P. Then, for s<t <7, w.p.l.

J



¥ [e(w)] ,) - 2le@e Lo(B)] 2,).

(The equation also holds if 4 1is replaced by any sub o-algebra

of @S.}
Fix T, and define ;(t) and %g by the Girsanov transformation.
Write 7(t) as ET(’G). Suppose that (6) - (7) hold for a time T, > T,
ey T Y T
and define the corresponding QTl, z ~(t), Py . Then ;AE () = z (t)
for t < T, and on sets B of 4, we have ?;E(B) = 'f)xl(B). This

follows from (05) since (XB is the characteristic function of the set B)

I

NTl Tl A
P, (B) = B [B0Gexp ¢ ()] Z,)]

T A Ty oA
B xexp (L) (exp 6 (3] D))

it

E, XgexXp gi(%) = ’f’i(B)

T

~o

Thus P~ 1s an extension of '1\53‘; If (6) - (7) hold for each

~

T < ©, we can replace QT by £ and define a unique measure- PX on

all the @t’ t < o, which will be consistent with the %}T( on @T.

‘Then z(t) will be an Tt0 process with respect to (Q, -@t"ﬁx)’ and
(Q,ri'(t),_@t,'l\sx) an TtO process (for all t < ). Both (6) - (7)

nold for all T < e if £ is bounded. ILet @ = U B, -
£50



3, Existence of a Solution to (8) for Unbounded T

Let V(x) denote a non-negative twice continuously dif-
ferentiable function which tends to infinity as [x| — ». Define
. S PN ~
Q= (x: V(x) < N} and let fN(x) = f(x) for x ¢ Qq end fﬁ(x) = 0,
x £ Qq- Define Cg = {w: x(t) e Qp te [0,T]}. Let ¥ denote the
differential generator of the process (8) and write %N for the

N Fa)
differential generator when f is replaced by M oin (8). Theorem 1

uses a stability idea to prove existence for (8), for all t < .

Theorem 1. Assume (Cl) and the above conditions on V(x).

s,
fmmistes

Let #V(x) < 0 for X not in some Q, & <« Then

(9) Beexp £ (T) = 1

2

T——————

for all T < «, and

~ t, 1 ~
z(t) = z(t) - [ o (x(s))f(x(s))ds

is a Wiener process, for all t < » with respect to (Q,g@L,ﬁ ).
o’ X

The solution to (8) exists for all +t < . It is an TtO process with

respect to Gn,z(t),gg%,%x) and, under the additional assumptions

(02-5), it is unique (in the sense that the mulbtivariate distributions

of any two solutions are equal) for all t < w,




Remark. TLet f(y),o(v) satisfy (3), (2) locaily, and let

L denote the differential generator, with coefficients determined by

1
£(y),o(y). If V(x) eand £,V(x) have the properties required in
Theorem 1, then the proof can be altered to yield existence and
uniqueness for the process dy = f£(y)dt + o(y)dz.

Proof. TLet T replace f, in (8), where N > a. Let

s

§E’T denote the transformed measure with ﬁg’T(A).= [ exp §§(§N)dP
A

and. Eﬁ the extension of %ﬂ’T

to the g-algebra @D on 0. Write
the Wiener process corresponding to ﬁg as EN(t) (instead of %(t)).
Then (8) ig an It0 process with respect to (Q,;N(t),ggt,%g)a By

virtue of (03) (for x = x(0))

(10) B suwp [x(s) - x| > e>0) »0
>8>0 -

as © -0, uniformly for x in compact intervalg., Also

QNV(X) <0 int Qp - 9y - BQaE Qp o et T denote the first exist' ' time
2

of the path x(t) from Qg - Q - R\ _,and t 0 ©=min (t,7).

Then, by It0's Lemma EzV(X(t N)-Vv(x) <0 for x e QU - Q-

Since

+8;N is the boundary of the set Q.

++If T is undefined for some path, set 7 = +w. Note that the exit

time t(w) (2= a path function) for x(t) and EN(t) are the same;

but their distributions may differ.
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BEW(x(tn 1)) - a < (W-a)B{x(s) hite 3y, before X and
X - X g
leaves QN,a in [O,t]},

we can conclude that

) SN, N,y . V(x)-a
(11) P {x (t) hits &y before &3, and leaves QN,a in [0,T]} < —qi5~ = &-

We will show that for each € > 0O, there is an N < = s0

that
~N, T
(12) PX{CN} >1 - e

Fix a, >a. Let x ¢ EQa. There is a 50 > 0 so that

min |x-y| > 8.
XedR,,yeR,
1

Tet A e Co. Then, since %N(x(t)) = %M(X(t)) on [0,T]

N
for M.z N and o ¢ Cﬁ, we have
~M T, M _ T, AN\, _ <
(13) Bia) = B exp LL(P)X, = E_exp £ (Fx, = Bi(A).

(03) implies that
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2
o)
a 'i;';N o) L _
sup X{ mex |x(t) - x| > O} < Kg‘mﬁ = €,
xe aQa 61_>_t_>_o 5,

But (13) implies that the constant K, depends only on the number ay

and does not depend on N, for N > a Thus, we can assume that K2

1 ’

does not depend on N.

Let G§ denote the event that x(t) goes to BQa before

BQN (or never leaves QN,a)’ then takes more time than T/n = 5, to

2

1

times and after each return takes no less than 81 to reach EQa s
1

before leaving QN for the first time. Then ﬁg[cﬁ} > ?ﬁ{Gﬁ} and

reach EQa then returns to EQa no fewer than n - 1 additional

~N, T
Pﬂ{GN} > 1 - n(e+e,) - &5, where

(a,-2)
N l
€ = Xiax Pi{x(t) reaches BQN before &, } < ey
ol
Thus, using 8, = T/n,
2
(o SPRTY (e - IO (€
x N T U\ N-a B R ()
o

and N and n can be chosen so that fE{Gﬁ} >1- e

There is a unigue measure ﬁi on £3& which is consistent
with the 55 on the sets Cg. Furthermore, (the left hand inequality
is [4], Lemma 2)
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S~ T T AN
1> PX(QQ = E_exp {,(£) > E exp £ (£)X > 1 - e
C
N
Since e is arbitrary, (9) holds, z(t), t+ < T, is a Brownian motion
with respect to (QT,fé%,ﬁg) and x(t), t < T, an T£0 process with
respect to (QT,;(t),ﬁg%,ﬁg). Furtheremore, since T is arbitrary,
we can replace © < T by t <o and fi and QT by ﬁx and Q.
The procesgs (8) is unique in the follewing sense. Suppose
that both xl(t); i=1,2 satisfy (8). Let Xl’N(t) denote ‘the
N ”~N
processes which regult when fN replaces f. Suppose that if
i,N . i e . . i, N,
x?7(t) e Qy for all t e [0,T], then x (t) coincides with =x777 (%)
on [0,T]. Then the uniqueness of the xl’N(t) (in the sense of
multivariate distributions) and the fact that %E{Cﬁ} = %f{cg} >1 - ¢
~N
for M >N (the Pi do not depend on i) imply uniqueness of the

Xl(t) in the sense of multivariate distributions. Q.E.D.

Remark. TLemma 7 of [4] would appear to yield existence for

N _
a large class of unbounded f. Bubt an examination of the proof shows
that its content is the following. Let processes (5) and (8) exist

with respect to some Wiener process, with (5) being unique, and

T
J lc'l(x(t))%(x(t))lgdt <« w.p.l, where x(t) is the solution to

o]
(5). Under some minor subsidiary condition, it is proved that

TA
E, eXp go(f) =1



~13.

where the expectation corresponds to (5). Then (8) can be obtained
by a Girsanov transformation from (5). But both the square
integrability property and existence for (8) must be established

first. But these properties are esgentially the desired result.

%. Markov Properties of (8)

Write (Ch). 1In each compact x set, there is an «a > 1

and M < «» go that

J Pa(x; t,¥) <M< o,

Theorem 2. Assume (C1) - (C3) and the condition on V and

£V of Theorem 1. Then the process (8) is a strong Markov process.

If (CL) holds, for some ¢ > 1, (8) is a strong Feller process.

Proof. T he terminology of Theorem 1 will be used. By

Theorem 1, the process is defined on the time interval [0,x), and
has continuous paths w.p.l.

First, we prove that (8) is a Markov process. ILet _2?? CIan
measure x(s), s <t. Define the transition function ?X(X; t,A) =

Px{x(t) € A}. Since the right hand term of

§X§x(t) e A} = Exx{x(t)eA}EXp QZ(ﬁ)



ke

is a Borel measurable function of x, s0 ig %(x; t,A) for each

X ~ ~
AedB Now assume that N replaces I, The Chapman-Kolmogorov

£
equation holds since, by (05) and the fact that (5) is a Markov

process,

~N s+t 4 X
Ex[x{x(t+s)eA}'£§§] - Ex[x{x(t+s)eA}exp gs (fN)IQQS]

= R = °t
Ex(s)[x{x(t)eA}eXp Co(f )] PN(X(S); »A)

w.p.1l. Thus by the definition Dynkin [6, Chapter 3], x'(t) (the It0 proc-
egs on (KQEN(t),.QQ,ﬁg) corresponding to the use of %N) is a

Markov process.

The o-algebras Rz

. ro
, @lso measure (8). The measure P for

£ - . > . 3 -
the unbounded ¥, has the correct conditioning properties since, by

(05) and the dominated convergence theorenm,

t=f 2

X
X[X{x(t+s)eA}X{CN }P%%]

Tts

t+s 50 X
- Ex[x{x(t+s)€A}X{CN }exp Cs (f)légs]
s
t+s o po
_9Ex[x{x(t+s)eA}eXP gs (f)légs] =

- Ex(s)[x{x(t)eA}eXP §2(§)] = §(X(s);t,A)

w.p.l. Then, by the definition [6, Chapter 3], (8) is a Markov process.
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(8) is a Feller process, hence a strong Markov process [6,
Theorem 3.10}. The proof is omitted. The proof of the stronger
tstrong! Feller++ property will be given next, under the additional
condition (Cl4). Let (ch) hold.

Supposing that (8) is a strong Feller process if 7 is
bounded, we show that it is a strong Feller process for unbounded .
Let g(+) @be bounded and measurable. Then Egg(x(t)) = GN(X) ig

continuous in x, for t > 0. Write G(x) = Exg(x(t)). Then

N ) .N. N
G(x) - ' . T, =N T :
[G(x) Ga(x)l‘g mix lg(x)] [ (a-Cy) + PQ{Q-CN}] >0 a8 Now,
vniformly in any compact x set. Thus, G(x), being the uniform
limit of continuous functions, is continuous.

"~

Finally, suppose f 1is bounded and (C4) holds. Reproducing

an argument of Rishel [2], we show for each compact x set, there is

a p>1 and M < o so that (g is the density of (8) - see (Oh))

(1k4) S qa(x; t,y)dy <M < e

TA process x(t) 1is a Feller process if E_f(x(t)) is a continuous
function of x, if f(x) dis continuous andl bounded.

**%(t) is a strong Feller process if E f(x(t)) is continuous in x

for any bounded Borel function f(x) and t > O.



~16-

v]. Let m~l + n'l =1

It

Define r(x; t,y) = Ex[exp ;Z(%)[x(t)
and note that, for any p > 1 and compact x set, there is an
N, < @ so that E exp p go(f) <N, (f4], Lemma 1}. Iet p > By, B >1.

By Holder's inequality

B B"gl
f pB(x; t,y)rB(X; t,y) =/ p l(x; t,y)rB(X; t,7)p (x; t,y)dy

B.n

(B-p1)m
<t»t (x; £, (x5 £,3)ayT/ 7S

(X: T, ) dy]l/m-

We can choose B >1,p>p,, m n and p>1 so that (B-Bl)mA= o,

Pn = p, pyn = 1, which , together with (ck), proves (14). Equation (1L)
implies that, as x varies in any compact set, the family q(x; t,y)‘of
functions of y is uniformly integrable. This, together with the con-
tinuity (in x) of %(x; t,(~=,a)) for any vector a (recall that there

is a density) implies that ﬁ(x; t,A) is continuous in x for any Borel

seé-iA; whié£>igpliéé;‘£ﬁ.turn, tﬁe strong Felle£ property. For more
detail, note that the boundary of any rectangle in the range space of
x(t) has zero probability, and that P(x; t,A) is continuous in x

if A is the sum of rectangles (open or closed). Let %(x; t,Aj) be

continuous in x for a collection of sets A,, which increase monotonically

J':
to A

a(x; t,y)dy.

B(x; t,8) = [ a(x] t,y)dy + [
A, A-Aj

J

The second integral goeg to zero as J — o uniformly in x in any
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compact set, by the uniform integrability of q(x; t,y). Since the

Tirst integral is continuous, so is the uniform limit %(X; t,A). Q.E.D.

L. The Invariant Measure, and the Asymptotic

Properties of the Measures of (8)

In [8], under the conditions (D1) - (D5), Khasminskii
proved the existence of a unique o-finite invariant measure for a
process x(t) with a stationary transition function P(x; t,A)

under the conditions (D1-5).

(D1) For any € neighborhood Neﬁx) of x, 1L - P{x; t’Ne(x)) =
o(t) wuniformly in x° in any compact set.
(D2) The process is a strong Markov and strong Feller

process.

(D3) %(x; t,U) > 0 for all open sets U and t > 0.

(D4) The paths aréhcontinuous w.p.i:

(D5) The process is recurrent. (There is some compact
set K and a random time T < ® w.p.l. so that x(7) ¢ K w.p.1l.,
for each initial condition.)

In [9], Kushner applied the result in [8] to obtain a
sufficient condition for the convergence of the measures of class of
diffusions to a unique invariant measure. Theorem 3 includes the
prior result as a special case. Zakai [10] has treated the invariant

measure problem for a class of diffusions satisfying (2) - (3), using
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a general method ofBenes [11]. A similar problem is treated in Elliot [12].
Elliot's method involves a condition on a ILie algebra generated by

certain functions of the diffusion coefficients, which is hard to

check in special cases. The result of Benes [11] (conoerning only
existence of an invariant measure) uses the condition that

lim P(x; t,K) » 0 for all compact sets K. This would not always
x|
hold under our‘conditions. E.g., the solution to X + x5 = 0, reaches

x =1 in a time that is bounded as x(0) — =, and we would expect a

pect a similar result for dx = -XBdt + odz.

Theorem 3. Assume (Cl) - (Ck), and the conditions on V(*)

in Theorem 1, except let #V(x) < -e <O outside of Q_. Let (5)

have a nowhere-zero density, for each initial condition x. Then (8)

has a unique invariant measure Q(.) and §(x5 t,A) 5 QA) as t > e

e

for any =x. Both E(x; t,A) and QA) have nowhere zero densities.

Remark. Theorem % only deals with invariant measures, but
almost all of stability results in [1] can be carried over to the

problem with discontinuous drift terms.

Proof. The second inequality of (03) implies (D1) for

N .
bounded %, and, hence, for the processes X (t). But, if (D1l) holds
for each XN(t), it holds for (8). (D2) is proved in Theorem 2.

since E_[exp §§(%)lx(t) - y] >0 w.p.l. and p(x; t,y) >0 for
X
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¥y by assumption, q(x; t,y) (the density for- %(X; t,A)) is positive
for almost all y (Lebesgue megsure). This implies (D3). (Dh) is

a consequence of Theorem 1. (D5) is a consequence of #V(x) < -€¢ < 0
for all large x. (See Theorem 4 in [9]). Indeed, the average time
to leave the set U - 9 - EQa (for x(0) = x) is bounded above by

(V(x) - a)/e < @. This together with (11) gives (D5). Thus all

(D1-5) hold.

Q(A) satisfies

[ Q(ax)B(x; t,4)

fan | a(ax)a(x; ).
A

Q(a)

it

Thus Q(A) > 0 for all sets A of positive Lebesgue measure and has
density [ Q(dx)q(x; t,u), which must be positive almost everywhere.

For a process with a transition density and a unique in-
variant measure Q(-) with a nowhere zero dehsity, Doob [T,

Theorem 5] proves that b(x] t,A) »Q(A) as t -« for any x. Q.E.D.
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